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Abstract— With the advance of the Semantic Web, varying
RDF data were increasingly generated, published, queried, and
reused via the Web. For example, the DBpedia, a community
effort to extract structured data from Wikipedia articles, broke
100 million RDF triples in its latest release. Initiated by Tim
Berners-Lee, likewise, the Linking Open Data (LOD) project
has published and interlinked many open licence datasets which
consisted of over 2 billion RDF triples so far. In this context, fast
query response over such large scaled data would be one of the
challenges to existing RDF data stores. In this paper, we propose a
novel triple indexing scheme to help RDF query engine fast locate
the instances within a small scope. By considering the RDF data
as a graph, we would partition the graph into multiple subgraph
pieces and store them individually, over which a signature tree
would be built up to index the URIs. When a query arrives,
the signature tree index is used to fast locate the partitions that
might include the matches of the query by its constant URIs.
Our experiments indicate that the indexing scheme dramatically
reduces the query processing time in most cases because many
partitions would be early filtered out and the expensive exact
matching is only performed over a quite small scope against the
original dataset.

I. INTRODUCTION

The Semantic Web was designed to enable data integration
and sharing across different applications by the World Wide
Web Consortium (W3C). With the advance of the Semantic
Web, varying RDF data were increasingly generated, pub-
lished, queried, and reused via the Web. For example, the
DBpedia, a community effort to extract structured data from
Wikipedia articles, broke 100 million RDF triples in its latest
release. Initiated by Tim Berners-Lee, likewise, the Linking
Open Data (LOD) project has published and interlinked many
open licence datasets which consisted of over 2 billion RDF
triples so far. In this context, fast query response over such
large scale of data would be one of the challenges to existing
RDF data stores.

Mature relational database was regarded as a good basis for
RDF store to manage large scale of triples. In general, those
RDF stores included a triple table where a RDF triple would
be persisted as a database row. To reduce the cost in space,
the URIs and literals of the triples might not be stored in the
triple table but could be identified by the links to URI/literal-
mapping tables. At present, Jena2 [1], Sesame [2], SOR [3]
and Oracle-RDF [4] were typical RDB based RDF stores. In
those systems, they contained a few unique features to improve

the query performance respectively. For example, property
table was proposed to store patterns of RDF statements in
Jena2. A n-column property table stored n − 1 statements
(1 column per property), which was efficient in terms of
storage and access. SOR utilized a DB2 feature, MDC (Multi
Dimensional Clustering) table, to relocate instances (except
for typeOf assertions) in physical layer. MDC mimics a multi-
dimensional cube by using a physical region for each unique
combination of dimension attribute values. A physical block
could be addressed by block indices, a higher granularity
indexing scheme. Oracle-RDF was a RDF store embedded
in Oracle RDBMS, which enabled users to embed a RDF
query into another SQL query retrieving non-RDF data and
optimized the query in the round.

In this paper, we proposed a novel triple indexing scheme to
help RDF query engine fast locate the instances within a small
scope. By considering the RDF data as a graph, we partition
the graph into many subgraphs and store them individually,
over which a signature tree is built up to index the URIs.
When a query passes, the signature tree index is used to fast
locate the partitions that might include the matches of the
query by its constant URIs. Our experiments indicated that
the indexing scheme dramatically reduced the query time in
most cases because many partitions would be early filtered out
and the costly exact matching was only performed over a quite
small scope against the original dataset. An intuitive example
is given as follows to illustrate the idea and our motivation.

Given a SPARQL [5] query of Figure 1(a) which logically
equals to the query graph as shown in Figure 1(b), we issue it
over the RDF data whose data graph is shown in Figure 1(c).
Suppose that the triples stored in the table are not well sorted
intentionally in advance and no index is created as well. After
the SPARQL query is translated and submitted to relational
database, query engine might determine a nested-loop self-join
on the column of subject accordingly. Roughly estimated as
shown in Figure 2(a), the join will cost 5 × 3 = 15 times
of string comparison and 5 + 3 = 8 I/O times. Once the
query and data are much more complex, the cost will increase
dramatically. Observing the same example from perspective
of graph model as shown in Figure 1(c), even though the
triples (or edges bridging two vertices) like <:Zhou :Type
:Prof> are totally disconnected with those including <:Yan
:MemberOf :Dep0>, and <:Lu :MemberOf :Dep0>,
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SELECT ?X
WHERE
{ ?X :Type              :Prof,
?X :MemeberOf  :Dep0,

}
(a) SPARQL Query
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(c) RDF Data Graph

Fig. 1. A Motivating Example
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(a) Join RDF Data Graph
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(b) Partitioned RDF Data Graph

Fig. 2. Our Proposed Idea

they are still selected to compare with each other by string.
Here, we are motivated to decrease the join cost by considering
the fact that the query results must be connected subgraphs em-
bedded in the RDF data graph and able to match query graph.
Therefore, we first partition the data graph into three groups
and add an additional column for the triple table to store the
group (subgraph) identities illustrated in Figure 2(b). Thus, we
only perform the join operations within each group, and finally
merge the results together and eliminate redundancy. For
this case, only two triples of <:Wang :Type :Prof> and
<:Wang :MemberOf :Dep0> are selected as candidates
in group 2. The join cost is reduced to 1 × 1 = 1 times of
string comparison and 1 + 1 = 2 I/O times. Furthermore, to
fast locate the candidate groups probably containing the query
graph, we build up signatures for all partitions and filter them
using the query graph signature.

The remaining of the paper is organized as follows. Graph
partition and overlapped storage techniques are presented in
Section II. Section III introduces our signature index structure.
Query processing procedure is shown in Section IV. Finally,
Section V concludes our techniques.

II. GRAPH PARTITIONING AND STORAGE

The first intention of our proposed method is to reduce the
cost of self-join on vertical database structure via replacing
with sub-self-joins within the independent narrow scopes of
triples (or graphs). Intuitively, graph partitioning technologies
like Metis [6] can help divide the large scale graph of
RDF data into multiple small pieces. Many of these efficient
algorithms and approaches have been contributed in the areas
of parallel computing, VLSI design, social network analysis
and community discovery. The graph partitioning method itself
is not the focus of our paper. We just exploit it to prepare data
over which our following techniques can exert their maximum
functions to improve RDF query performance.

General graph partitioning methods always divide a graph
into multiple non-overlapped subgraphs by cutting their con-
necting edges. To secure the query completeness and sound-
ness, however, we have to keep the information of cutting
edges and partition vertices in a way. Therefore, we would
partition the original RDF data graph into overlapped sub-
graphs, and add one column GID, i.e., subgraph id, into the
triple table. Let us begin with the definitions:

A RDF graph is a directed labeled graph G = {(vi, ej , vk)|
vi, vk ∈ V, ej ∈ E}, where V denotes the vertex set and E
represents edge set. We can also denote it as G = (V, E) for
simplicity. Assume that G is divided into n partitions P1 =
(V1, E1), P2 = (V2, E2), ..., Pn = (Vn, En) by partitioning
the vertices into n groups, then:

• Borderline vertex set: Vb = {vi| < vi, e, vj >, vi ∈
Pi, vj ∈ Pj , i �= j}.

• Related edge set: Er = {e| < vi, e, vj >, vi, vj ∈ Vb}.
• Overlapped graph Oij between Pi and Pj : Oij =

(Vb, Er).
Definition 1: RDF subgraph. Given i, j ∈ [1, n], i �= j, a

RDF subgraph corresponding to partition Pi and Pj is defined
as

Si = {(vx, ey, vk)|vx, vk ∈ Vi ∪ VOij , ey ∈ Ei ∪ EOij} (1)

As demonstrated in Figure 3, the original graph is first di-
vided into two non-overlapped partitions P1 and P2 by cutting
the edges e15 and e16. v1, v5 and v6 belong to Borderline
vertices. e15, e16 and e56 are Related edges. According to
definition 1, after overlapping, S1 and S2 are two subgraphs.
Through our partitioning and overlapping processes, the orig-
inal RDF graph is divided into n overlapped subgraphs over
which the query will be processed.

Definition 2: d-reachable vertex pair. Given two vertices
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Fig. 3. Graph Partitioning and Overlapping

vi and vj , the distance D(vi, vj) = d, we call vi and vj the
d-reachable vertex pair.

The distance here is defined as the minimum number of
edges that connecting two vertices.

Definition 3: 2-reachable Graph. Given a graph G =
(V, E), if ∀(vi, vj) ∈ V is a 1 or 2-reachable vertex pair,
G is called a 2-reachable graph.

The definitions lead to the following property:
Property 1: Given a 2-reachable graph g and a set of

subgraphs S = {S1, S2...Sn} obtained from partitioning and
overlapping a RDF graph G according to definition 1. (1) If
g is contained in G, g must be contained in at least one of
the subgraphs Si...Sk ∈ S, 1 ≤ i ≤ k ≤ n as well. (2) If g is
not contained in any subgraph, then g must not be contained
in G.

Proof: (1) Given that g is a subgraph of G, there are
only two cases: (a) g is contained in a particular partition Pi.
In this case, straightforwardly, g would be contained in the
G’s subgraphs that contain Pi. (b) Some vertices of g are
borderline vertices, which means there does not exist a single
non-overlapped partition containing g. However, according to
definition 1, these vertices would be redundantly stored in their
overlapped partitions. Therefore, g would still be contained in
some subgraphs of G. (2) Suppose that g is not contained by
any subgraphs of G, and g is a subgraph of G. According to
(1), The conflict happens. Therefore, the assumption is false.
We get property 1.

According to the property, given a 2-reachable RDF query
graph over RDF graph G, the query results can be obtained
soundly and completely from searching the subgraphs set S
of G instead of G itself. The technique of indexing the sub-
graphs and decomposing a RDF query graph into 2-reachable
subgraphs will be introduced in section III and IV.

III. SIGNATURE TREE BASED INDEX STRUCTURE

Property 1 has given a hint that a 2-reachable query graph
can be answered completely and efficiently over a set of
overlapped RDF subgraphs by comparing the query over the
original graph. Supposing that a RDF query graph and a
RDF data graph have been decomposed and divided into a
set of 2-reachable graph subqueries and multiple overlapped
partitions respectively in a certain way, we thus need to
fast locate the embedded subgraphs in partitions for each 2-
reachable graph subquery. However, subgraph isomorphism
checking has been proven to be a NP-Complete problem.
Therefore, we propose a two-phase strategy to address the
problem: filter first and refine next. Through probing an index

structure, all partitions that may potentially answer a particular
2-reachable graph subquery are returned. Then, an exact SQL
query corresponding to the 2-reachable graph is executed over
these candidate partitions to get the final results.

Considering that all vertices of an RDF graph identified by
URIs are unique, we can provide a strong punning power in
term of the URIs while processing a RDF subquery.

Property 2: Given two graphs g and s , the URI sets of g
and s are Ug and Us respectively. If and only if Ug

⋂
Us = Ug,

g might be potentially contained in s.
Property 2 indicates that those candidate RDF data partitions

(or subgraphs) could be pruned safely during the query pro-
cessing, while there exists at least a URI appearing in the query
graph but not in the candidates. Taking the query example
of Figure 1(a) again, we can find that the URI set of the
query includes :memberOf, :typeOf, :Dep0, and :Prof.
Comparing this URI set with the counterpart of each candidate
partition as shown in Figure 2(b), only one partition whose
GID value equals to 2 can satisfy the above requirement.
The other two candidate partitions are pruned safely. At last,
we just need to perform the costly subgraph isomorphism
checking once over the filtered candidate partitions.

An URI is a string in essence, large scale of string matching
is not trivial. In the following subsections, a URI signature
and a signature tree index structure are proposed to speed up
the filtering process. (In this paper, we do not take literals as
pruning condition because some of RDF queries may involve
range comparisons over literals.)

A. Graph Signature

The signature is a bit vector to represent a set of objects
and often used as an approximate filter for supporting mem-
bership query. Its advantages like very quick comparison, easy
maintenance and none false negatives lead to wide adoption in
the applications [7], [8]. Many approaches such as [7] can be
used to construct a signature. In this paper, we utilize bloom
filter method [9] to generate signatures. A bloom filter-based
signature consists of a vector of m bits and k independent
hash functions ranging from 1 to m. According to the formula
p = (1− e−kn/m)k [9], n is the distinct number of elements.
We can observe that the size m of the vector is varied with
false positive rate.

The signature of a RDF triple is built through: (1) Hashing
each URI Ui in a triple to k values fi1, fi2...fik, by k hash
functions h1, h2...hk. (2) Setting the corresponding positions
of those hash values for URIs to 1 on the m bits vector. (For
example, if a particular hash value equals to 5, we should
set the 5th position of the vector to 1.) Based on the RDF
triple signatures, a RDF graph signature can be computed over
them with an “OR” bit operation. As soon as a 2-reachable
query graph q comes, its graph signature sq is constructed at
first, and compared with sg . If sq ∧ sg = sq , q may be a
potential subgraph of g. Otherwise, any match of q must not
be contained in g, and g is pruned safely. Benefited from bit
operation, all computations among signatures are extremely
efficient.
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B. Index Structure

1) Index Construction: We structure the subgraph signa-
tures to facilitate the filtering process using a tree. The leaf
nodes in this tree are the signatures themselves, while the
internal nodes are the combinations (bit “or”) of their children
nodes. The principle of organizing the tree structure is to push
the internal nodes having higher selectivity up to the root as
much as possible for early pruning. There were some existing
methods for building a signature tree [7], [10], [11]. These
techniques were mainly applied in the applications where the
objects were independent with each other. Their optimizations
are merely based on “0” and “1” positions of the signatures.
For our problem, however, the objects are subgraphs, and they
are generated by the graph partitioning process illustrated in
Section II, where some vertices and edges on their borderlines
are overlapped each other. The existing methods obviously do
not perform very well against our problem. Our proposals are
based on two different definitions of subgraph distances [12]:
(1) A statistical approach which uses the size of overlapping
region among a set of graphs to measure the distance and
(2) Using hierarchical information which is obtained graph
partition phase. We can conclude that the bigger the distances
among the subgraphs are, the higher the selectivity of the
internal node indexing them is.

2) Index Probing: When a query graph q comes, its signa-
ture sq is used to probe index structure. When comparing with
each internal node p with signature sp, we need to test whether
sq ∧ sp = sq . If yes, we continue the comparisons with p’s
children. Once the searching reaches the leaf nodes, we can
get a set of subgraph IDs. The answer of q if not NULL must
be included in these subgraphs. While the test stops in the
internal nodes or even the root, definitely, no results would be
returned for q. Fast response to NULL-result query by probing
an external index structure instead of accessing the databases
is very useful for most of practical query applications. It is
also one of the important features of our technique.

IV. QUERY PROCESSING

As discussed in property 1, only a 2-reachable query graph
can be searched in the subgraph set without loss of any accu-
racy. However, the query graphs are not always 2-reachable.
Thus, We have to decompose a complex query graph into
several 2-reachable subgraphs, and apply these subgraphs to
probe index structure individually. These subgraphs are called
sub-queries. Finally, we combine the related subgraph ids
together for all the sub-queries and perform the query in
database. To decompose a query graph, a two-phase method
is proposed as follows:

1) Enumerate 2-reachable sub-queries centered by each
vertex in the query graph.

2) Find out the sub-queries with highest selectivity in the
signature tree.

For each sub-query qi, the index probing phase returns
an IDList which is a group of subgraph IDs. As long as
the IDList is not empty, a SQL statement will be gener-
ated accordingly. Otherwise, the query processing is early

terminated with NULL result. The size of IDList potentially
affects the performance of SQL executions. Here, different
SQL optimization plans are adopted in terms of the size of
IDList. The SQL plans are produced as follows:

1) Direct: If the size of IDList is very small, IDList.size()≤
nα, SQL statement is rewritten by adding subgraph ID
constraints into WHERE clause directly.

2) Temp Table: If the size of IDList is not very large
compared to the whole table, nα <IDList.size()< nβ,
we insert all the subgraph IDs into a temp table and
rewrite the SQL by an additional join with the temp
table. (If we adopt the Direct method in this case, the
SQL would be possible too long to be accepted by
RDBMS for the length restriction.)

3) Full Table: When the size of IDList is very very large,
IDList.size()≥ nβ, we will determine to use the original
SQL without additional constraints. The reason is that
the cost of using the temp table increases beyond the
querying over the whole table.

The parameter of α and β were tuned in our experiments [12].

V. CONCLUSIONS

We propose a novel scheme to store, index, and query
RDF data in triple stores. Graph feature of RDF data is
taken into considerations which help reduce the join costs
on the vertical database structure. We first partition RDF
triples into overlapped groups and store them in a triple table
with group identity. Second, we build a signature tree to
index them. Third, a complex RDF query is decomposed into
multiple sub-queries to be evaluated with optimized SQL. The
experimental results [12] confirm that for some extreme cases,
it can promote 3 to 4 orders of magnitude.
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